Minggu, 21 Mei 2017

PENYELESAIAN BEBERAPA SOAL MATEMATIKA (TOPIK: KOMPOSISI MATEMATIKA (TOPIK: KOMPOSISI FUNGSI DAN TRIGONOMETRI)

PENYELESAIAN BEBERAPA SOAL MATEMATIKA (TOPIK: KOMPOSISI FUNGSI DAN TRIGONOMETRI)
.
Ivan Taniputera.
18 Mei 2017.
.
1. Jika (f o g) = x^2 + 4x - 9 dan f(x) = x+3. Tentukan g(x).
Jawab:
.
Ini adalah soal komposisi fungsi.
Karena f o g merupakan fungsi kuadrat dan f(x) merupakan fungsi linear; maka g(x) sudah pasti merupakan fungsi kuadrat.
Kita misalkan g(x) = ax^2+bx+c
Masukkan g(x) ke f(x).
(f o g) (x) = (ax^2+bx+c) + 3
= ax^2 + bx + (c+3)
.
Jadi a = 1; b = 4
.
c+3 = -9; sehingga c = -12.
.
Oleh karenanya g(x) = x^2 + 4x - 12.
.
2. Diketahui f(x) = 1/2 x - 1 dan g(x) = 2x + 4. Tentukan (g o f)^-1(6).
.
Jawab:
.
Tentukan (g o f) terlebih dahulu:
(g o f) = 2 (1/2x - 1) + 4
= x - 2 + 4
= x + 2
.
Kini tentukan fungsi inversnya.
.
y = x + 2
x = y - 2
.
Jadi (g o f)^-1 (x) = x - 2.
.
(g o f)^-1 (6) = 4
.
3. Apabila n.tg 45⁰ .cos 60⁰ = sin 60⁰.cotg 60⁰. Hitunglah n.
.
Jawab:
.
Kita hitung dahulu nilai masing-masing.
.
n.1.1/2 = 1/2V3.1/3V3
.
CATATAN: V = tanda akar.
.
1/2.n = 1/2
Jadi n = 1
.
4. Tangen x = 1/V7. Tentukan nilai ((cosec^2(x)-sec^2(x))/(cosec^(x)+sec^2(x)).
.
Jawab:
Kita hitung dulu nilai secan (x) dan cosecan (x). 
Secan = sisi miring/sisi pada sudut
Cosecan = sisi miring / sisi di hadapan sudut.
.
Buat dulu gambar segitiganya. Ingat bahwa Tangen adalah sisi di hadapan sudut dibagi sisi pada sudut itu.
.


.
Secan (x) = V8/V7
Cosecan (x) = V8/1 atau V8.
.
Kemudian tinggal kita hitung saja.
.
= ((V8)^2-(V8/V7)^2)/((V8)^2+(V8/V7)^2)
= (8 - 8/7)(8+8/7)
= (48/7)(64/7)
= 3072/49

MEMECAHKAN SOAL MATEMATIKA MENGENAI PEMBUKTIAN BAHWA ANGKA HASIL PALING TIDAK DIAKHIRI DENGAN DUA ANGKA NOL

MEMECAHKAN SOAL MATEMATIKA MENGENAI PEMBUKTIAN BAHWA ANGKA HASIL PALING TIDAK DIAKHIRI DENGAN DUA ANGKA NOL.
.
Ivan Taniputera.
17 Mei 2017.
.
Saya menemukan soal sebagai berikut:
.
“ Buktikan bahwa (81^100).(121^100)-1 hasilnya diakhiri paling tidak dengan dua angka 0.”
.
Saya akan memecahkan soal tersebut sebagai berikut.
.
(81^100).(121^100)-1 = ((9^2)^100).((11^2)^100)-1
= 99^200-1
= 99^200-1^200 [Satu dipangkatkan berapa saja tetap 1].
=((99)^2)^100 - ((1)^2)^100)
.
Kita akan menggunakan rumus:
.
p^a - q^a = (p-q)(p^(a-1) + (p^(a-2).q) + .........)
.
Jadi ((99^2)^100 - ((1^2)^100) = (99^2-1^2).((99^2)^99 + (99^2)^98.1 + ............)
.
Kita akan menggunakan rumus:
.
p^2-q^2 = (p+q).(p-q)
.
= (99 + 1).(99 - 1).((99^2)^99 + (99^2)^98.1 + ............)
= (100).(98).((99^2)^99 + (99^2)^98.1 + ............)
.
Perhatikan bahwa terdapat 100 sebagai faktor. Perkalian dengan 100 paling tidak akan memberikan hasil yang diakhiri dengan dua angka nol.
.
Sebagai tambahan, kita juga dapat menyimpulkan bahwa hasilnya pasti dapat dibagi atau merupakan kelipatan 98.

Senin, 15 Mei 2017

BERAPAKAH JUMLAH ANGKA NOL DI BELAKANG 2017! (FAKTORIAL)?

BERAPAKAH JUMLAH ANGKA NOL DI BELAKANG 2017! (FAKTORIAL)?
.
Ivan Taniputera.
15 Mei 2017.
.


Pada kesempatan kali ini kita akan memecahkan soal berapakah jumlah angka 0 di belakang 2017!. Adapun yang dimaksud dengan 2017! adalah 1 x 2 x 3 x 4 x 5 x 6 x.........x 2015 x 2016 x 2017. Tentu saja ini akan menghasilkan sebuah bilangan yang sangat besar. Menghitung secara manual akan menghabiskan terlalu banyak waktu. Oleh karenanya, kita akan menerapkan metoda yang efisien dalam memecahkan soal tersebut.
.
Pertama-tama kita perlu memahami bagaimana jumlah angka 0 bertambah pada hasil setiap faktorial. Pertambahan angka 0 diperoleh dari setiap perkalian antara 2 x 5 dalam proses perhitungan hasil faktorial. Namun karena kelipatan 5 lebih sedikit dibandingkan kelipatan 2, maka kita cukup menghitung ada berapa total perpangkatan faktor lima pada 2017!. Dalam bahasa sederhana total angka perpangkatan faktor 5 kita sebut sebagai jumlah”kemunculan” angka 5. Jumlah kemunculan angka 5 ini identik dengan jumlah angka 0 di belakang hasil faktorial sebuah bilangan.
.
Agar jelasnya, silakan perhatikan contoh sebagai berikut.
.
10! = 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10.
.
Kita cari bilangan yang merupakan kelipatan 5, yakni 5 dan 10.
Sepuluh jika difaktorkan adalah 2 x 5. Jadi, kita boleh menuliskan sebagai berikut:
,
10! = 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x (2x5).
10! = (5^2) x 2 x 1 x 2 x 3 x 4 x 6 x 7 x 8 x 9.
,
Total perpangkatan angka 5 adalah 2. Dalam bahasa sederhananya kita sebut pada 10!, angka 5 “muncul” dua kali. Oleh karenanya kita boleh menyimpulkan bahwa 10! hasilnya akan diakhiri oleh dua angka nol. Ternyata hasilnya adalah 3628800. Jadi benar bahwa di belakangnya diikuti oleh dua angka nol.
.
Sebagai contoh berikutnya kita akan menghitung 30!.
.
30! = 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x.........x 28 x 29 x 30.
.
Kita cukup memperhatikan bilangan kelipatan lima saja; yakni:
.
5, 10, 15, 20, 25, dan 30.
.
5 = 1 x 5
10 = 2 x 5
15 = 3 x 5
20 = 4 x 5
25 = 5^2
30 = 5 x 6
.
Kita boleh menuliskan: 30! = (5^7) x 2x 3 x 4 x 6 x 1 x 2 x 3 x 4 x 6 x 7 x 8 x 9 x 11 x 12 x.........29
Jadi secara total angka 5 “muncul” 7 kali. Oleh karenanya, 30! akan diikuti oleh tujuh angka 0. Ternyata hasilnya adalah 265252859812191058636308480000000. Jadi, memang benar hasilnya diikuti oleh tujuh angka 0.
.
Kini kita akan menerapkan metoda di atas pada 2017!.
.
Bilangan yang mempunyai faktor lima atau kelipatan lima ini dapat kita rumuskan menjadi:
.
(5^n).x.
Contoh 75 = 5^2 x 3 (n=2 dan x=3) atau 100 = 5^2 x 4 (n=2 dan x = 4)
.
Dengan x dan n merupakan anggota bilangan bulat dan x bukan kelipatan 5.
Jadi n ini bisa 1, 2, 3, 4, 5, dan seterusnya. Sedangkan x bisa 1, 2, 3, 4, 6, 7, 8, 9, 11, dan seterusnya.
.
Pertama-tama kita akan mencari berapa nilai n tertinggi yang mungkin.
kita misalkan x = 1 terlebih dahulu.
.
5^2 = 25
5^3 = 125
5^4 = 625
5^5 = 3125 (tidak memenuhi, karena lebih besar dibandingkan 2017).
.
Nilai n terbesar yang mungkin adalah 4.
.
Untuk nilai n = 4, nilai x terbesar yang mungkin adalah 3; dengan 5^4 x 3 = 1875. Jika x = 4, maka nilainya akan menjadi 2500, dimana ini tidak berlaku karena lebih besar dibandingkan 2017. Kini untuk n = 4, kita akan menghitung berapa jumlah bilangan kelipatan lima yang mungkin. Untuk n = 4, maka nilai x yang mungkin adalah 1, 2 dan 3. Jadi dalam hal ini ada 3 bilangan kelipatan 5 dengan n = 4.
.
Kini kita akan menghitung untuk n = 3.
.
Untuk n = 3, nilai x terbesar yang mungkin adalah 16. Jadi, nilai x yang mungkin adalah 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16; yakni sejumlah 13. Terdapat 13 bilangan kelipatan 5 dengan n = 3.
.
Kita akan menghitung untuk n = 2.
.
Untuk n = 2, nilai x terbesar yang mungkin adalah 79. Jumlah nilai x yang mungkin adalah 64 bilangan (semua bilangan kelipatan lima dari 1 hingga 79 telah dibuang). Jadi terdapat 64 bilangan kelipatan 5 dengan n = 2.
.
Kita akan menghitung untuk n = 1
.
Untuk n = 1, nilai x terbesar yang mungkin adalah 403. Jumlah nilai x yang mungkin adalah 323 bilangan (semua bilangan kelipatan lima dari 1 hingga 403 telah dibuang). Jadi terdapat 323 bilangan kelipatan 5 dengan n = 1
Kini kita akan menghitung berapa kali secara keseluruhan faktor 5 dipangkatkan.
.
  • Untuk n = 4 terdapat 3 bilangan. Jadi secara total 5 dipangkatkan 12 (5^12).
  • Untuk n = 3 terdapat 13 bilangan. Jadi secara total 5 dipangkatkan 39 (5^39).
  • Untuk n = 2 terdapat 64 bilangan. Jadi secara total 5 dipangkatkan 128 (5^128).
  • Untuk n = 1 terdapat 323 bilangan. Jadi secara total 5 dipangkatkan 323 (5^323).
.
Kini tinggal kita jumlahkan berapa keseluruhan “kemunculan” bilangan lima bagi n = 1 hingga 4. Hasilnya adalah: 12 + 39 + 128 + 323 = 502.
.
Karenanya kita boleh menuliskan:
.
2017! = (5^502) x 1 x 2 x 3 x 4 x 6 x 7 x 8 x 9 x 11 x 12 x 13 x 14 x 16 x 17 x 18 x 19 x 21 x......x 2017.
.
Dengan demikian 2017! akan menghasilkan bilangan yang diikuti oleh 502 angka 0. Kita sudah memecahkan soal ini. Apabila menggunakan cara manual, kemungkinan Anda akan menghabiskan waktu bertahun-tahun! Bayangkan suatu bilangan yang sangat besar dengan diikuti oleh 502 angka 0!

Minggu, 14 Mei 2017

MEMECAHKAN PARADOX PEMBOHONG (LIAR PARADOX)

MEMECAHKAN PARADOX PEMBOHONG (LIAR PARADOX)
.
Ivan Taniputera.
15 Mei 2017.
.
Hari ini saya menjumpai komik sebagai berikut.
.

.
Ternyata gambar itu membicarakan mengenai “paradoks pembohong” (liar paradox). Ini merupakan salah satu teka-teki dan logika filsafat klasik di dunia. Beberapa orang sudah memberikan pemecahannya, namun kali ini saya akan mencoba mengemukakan pemecahan berdasarkan pemikiran saya sendiri.
.
Bagi yang belum memahami apa itu “paradoks pembohong” saya akan memaparkannya secara singkat dan sederhana.
.
Terdapat seseorang pembohong yang seluruh perkataannya adalah kebohongan. Suatu kali ia mengatakan sesuatu seperti “aku pembohong” atau “pernyataan ini salah.” Permasalahannya adalah sebagai berikut. Bila pernyataan “aku pembohong” adalah benar, maka yang dikatakannya itu adalah bukan kebohongan. Dengan demikian pernyataan di atas, yakni “seluruh perkataannya adalah kebohongan” tidak lagi berlaku. Terjadi kontradiksi di sini. Begitu pula bila pernyataan itu dianggap kebohongan, maka yang benar adalah ia sesungguhnya bukan pembohong. Jadi, terjadi pula kontradiksi di sini.
.
Ringkasnya:
.
Jika “aku pembohong” bernilai BENAR (TRUE), maka ia telah mengatakan hal yang sebenarnya. Jadi definisi bahwa “seluruh perkataannya adalah kebohongan” menjadi bernilai SALAH (FALSE).
Jika “aku pembohong” bernilai SALAH (FALSE), maka ia adalah “bukan pembohong” sehingga juga bertentangan pula dengan definisinya.
.
Begitu pula, bila “pernyataan ini salah” bernilai BENAR (TRUE), maka ia telah mengatakan hal yang sebenarnya, yakni hal itu memang salah. Jadi definisi bahwa “seluruh perkataannya adalah kebohongan” menjadi bernilai SALAH (FALSE).
Jika “pernyataan ini salah” bernilai SALAH (FALSE), maka pernyataan itu menjadi benar. Dengan demikian, ia telah mengatakan sesuatu yang benar. Definisi bahwa seluruh perkataannya adalah kebohongan menjadi tidak berlaku atau bertentangan dengan definisinya.
.
Versi lain paradoks ini yang pernah saya jumpai adalah mengenai Pinokio. Jika Pinokio mengatakan, “aku pembohong,” hidungnya akan bertambah panjang atau pendek? Sebagaimana yang telah kita ketahui, jika berbohong Pinokio akan bertambah panjang hidungnya.
.
Pemecahan saya adalah sebagai berikut. Dalam matematika mustahil ada sesuatu yang bertentangan dengan definisinya. Analogi sederhananya adalah sebagai berikut. Bilangan bulat ganjil tidak dapat dibagi dua, maka artinya peluang menemukan bilangan bulat ganjil yang dapat dibagi dua adalah nol. Setiap bilangan bulat pasti genap atau ganjil. Tidak ada pula bilangan yang sekaligus genap dan ganjil. Jadi, peluang menemukan bilangan yang genap dan ganjil sekaligus juga sama dengan nol. Selanjutnya, tidak ada pula bilangan bulat yang bukan ganjil dan juga bukan genap. Menemukan bilangan bulat yang bukan ganjil dan juga bukan genap adalah mustahil. Peluang menemukannya sama dengan nol pula. Jadi, pernyataan “bilangan bulat ganjil yang dapat dibagi dua,” “bilangan bulat yang sekaligus ganjil dan genap” dan “bilangan bulat yang bukan ganjil dan juga bukan genap” adalah kemustahilan serta bersifat ambigu. Semua itu dikarenakan pertentangan dengan definisinya.
.
Analogi lain adalah lingkaran. Lingkaran dalam matematika didefinisikan sebagai himpunan seluruh titik yang berjarak sama dengan sebuah titik pusat, yang dalam hal ini disebut titik pusat lingkaran. Apakah ada lingkaran yang berbentuk persegi? Jawabnya tidak ada, karena akan bertentangan dengan definisi di atas. Titik-titik pada sebuah persegi mustahil semuanya akan mempunyai jarak yang sama dengan suatu titik pusat. Apakah ada lingkaran yang sekaligus persegi? Jawabnya tidak ada, karena itu merupakan sesuatu yang ambigu. Kesimpulannya, definisi menghindarkan sesuatu yang bersifat ambigu. Dengan kata lain, sesuatu yang bersifat ambigu akan “ditapis” atau “disaring” keluar.
.


.
Kembali pada paradoks di atas. Apabila definisi sudah jelas menyatakan “seluruh perkataannya adalah kebohongan,” maka pernyataan bersifat ambigu seperti “aku pembohong” mustahil dinyatakan oleh seseorang yang “seluruh perkataannya adalah kebohongan.” Begitu pula mustahil terdapat bilangan bulat yang sekaligus ganjil dan genap atau bilangan bulat yang bukan ganjil dan genap. Peluang seseorang yang seluruh perkataannya adalah kebohongan menyatakan “aku pembohong” adalah sama dengan nol.